Фаза распредвала на что влияет
Перейти к содержимому

Фаза распредвала на что влияет

  • автор:

Влияние конструкции распредвала на работу двигателя

Влияние конструкции распредвала на работу двигателя

Существует три важных характеристики конструкции распредвала: величина подъема клапанов, продолжительность открывания клапана и фазы газораспределителя распредвала. О них поговорим в данной статье и рассмотрим влияние конструкции распредвала на работу двигателя.

Подъем клапана измеряется в миллиметрах и представляет максимальное расстояние, на которое клапан отходит от седла. Продолжительность открывания клапанов — это отрезок времени, измеряемый в градусах поворота коленчатого вала. Продолжительность измеряется после того, как клапан поднялся от седла на малую величину, часто составляющую 0,5 или 1,2 мм.

Каждый из критериев конструкции распредвала связан с другими и модификация одного повлияет, как другие улучшат или ухудшат работу двигателя. Но, вообще говоря, увеличение подъема клапана и продолжительности его открывания или оптимизация фаз газораспределения увеличивают мощность.

конструкция распредвала

После небольшого увеличения подъема клапана и продолжительности его открывания, кривая мощности смещается выше в область оборотов. Когда продолжительность открывания и, в меньшей степени подъем увеличиваются еще больше, двигатель даже неспособен работать на низких оборотах.

‘Гоночные’ распредвалы с большой продолжительностью открывания имеют низко-оборотный предел ‘холостого хода’ (2000 об/мин). Распредвалы с большой продолжительностью открывания можно сделать ‘цивилизованными’ путем изменения моментов открывания и закрывания клапанов, но компромиссом будет максимальная мощность.

Из трех главных критериев распредвала, продолжительность открывания хорошо известна среди конструкторов форсированных двигателей. Такое понимание происходит из-за непосредственной манеры влияния продолжительности открывания на мощность двигателя. Можно сказать, что чем дольше удерживаются открытыми клапаны, тем большая максимальная мощность двигателя будет получена. Если продолжительность открывания клапана увеличивается более определенной величины, дополнительная максимальная мощность будет получена ценой качества работы двигателя на низких оборотах.

Для гоночных применений максимальная мощность является практически единственной целью, но для ‘обычных’ автомобилей с форсированными двигателями очень важными являются приемистость и крутящий момент на низких оборотах.

Увеличение подъема клапана полезна в увеличение мощности, т. к. может добавить мощность без существенного влияния на характеристики двигателя на низких оборотах. В теории конструкция распредвала с короткой продолжительностью открывания клапанов для увеличения максимальной мощности. Теоретически это будет работать. Однако, механизмы привода клапанов не такие простые. В этом случае высокие скорости движения клапанов, обуславливаемые этими профилями, существенно уменьшают надежность двигателя.

Когда продолжительность открывания клапана уменьшается, то на перемещение клапана из закрытого положения до полного подъема и возвращения обратно остается меньше времени. Когда продолжительность становиться еще короче, потребуются клапанные пружины с увеличенным усилием и часто становится механически невозможным приводить в движение клапаны даже при относительно низких оборотах.

Что влияет на максимальный подъем клапана?

Распредвалы с величиной подъема, большей 12,7 мм, находятся в той области, которая непрактична для обычных двигателей. Распредвалы с продолжительностью такта впуска менее 280 о , сочетающейся с величиной подъема клапана более 12,7 мм, обеспечивают высокие скорости открывания и закрывания клапанов. Это создает нагрузки на механизм привода клапанов, что уменьшает надежность кулачков распредвала, клапанных пружин, стержней клапанов, направляющих втулок клапанов.

Хотя вал с высокими скоростями подъема клапанов может хорошо работать сначала, срок службы его и направляющих втулок клапанов может не превышать 20 000 км. К счастью, большинство фирм-производителей распредвалов конструируют валы так, что обеспечивается хороший компромисс между значениями подъема и продолжительности открывания клапанов, при долгом сроке службы и надежности.

    Смотрите так же:
  • Цены на обучение
  • Обучение на МКПП
  • Обучение на АКПП

Как влияет конструкция распредвала на работу двигателя?

Существует три важных характеристики конструкции распредвала, которые управляют кривой мощности двигателя: величина подъема клапанов, продолжительность открывания клапана и фазы газораспределителя распредвала. О них и поговорим в данной статье и рассмотрим влияние конструкции распредвала на работу двигателя.

Подъем клапана измеряется в миллиметрах и представляет собой максимальное расстояние, на которое клапан отходит от седла. Продолжительность открывания клапанов — это отрезок времени, измеряемый в градусах поворота коленчатого вала. Продолжительность обычно измеряется после того, как клапан поднялся от седла на малую величину, часто составляющую 0,5 или 1,2 мм.

Каждый из критериев конструкции распредвала связан с другими и модификация одного повлияет на то, как другие улучшат или ухудшат работу двигателя. Но, вообще говоря, увеличение подъема клапана и продолжительности его открывания или оптимизация фаз газораспределения увеличивают мощность.

После небольшого увеличения подъема клапана и продолжительности его открывания, кривая мощности смещается выше в область оборотов. Когда продолжительность открывания и, в меньшей степени подъем увеличиваются еще больше, двигатель может быть даже неспособен работать на низких оборотах.

«Гоночные» распредвалы с большой продолжительностью открывания часто имеют низко-оборотный. предел «холостого хода» 2000 об/мин или даже выше. Распредвалы с большой продолжительностью открывания можно сделать более «цивилизованными» путем изменения моментов открывания и закрывания клапанов, но компромиссом будет максимальная мощность.

Из трех главных критериев конструкции, используемых на распредвале: продолжительность открывания клапанов, подъем клапанов и фазы газораспределения, продолжительность открывания наиболее хорошо известна среди конструкторов форсированных двигателей. Такое распространенное понимание происходит из-за непосредственной манеры влияния продолжительности открывания на мощность двигателя. Из общих соображений можно сказать, что чем дольше удерживаются открытыми клапаны, тем большая максимальная мощность двигателя будет получена. Если продолжительность открывания клапана увеличивается более определенной величины, дополнительная максимальная мощность будет получена ценой качества работы двигателя на низких оборотах.

Для гоночных применений максимальная мощность является практически единственной целью, но для «обычных» автомобилей с форсированными двигателями очень важными являются приемистость и крутящий момент на низких оборотах.

Увеличение подъема клапана может быть полезным вкладом в увеличение мощности, т. к. оно может добавить мощность без существенного влияния на характеристики двигателя на низких оборотах. В теории конструкция распредвала с короткой продолжительностью открывания клапанов для увеличения максимальной мощности. Теоретически это будет работать. Однако, механизмы привода клапанов не такие простые. В этом случае высокие скорости движения клапанов, обуславливаемые этими профилями, существенно уменьшают надежность двигателя.

Когда продолжительность открывания клапана уменьшается, то на перемещение клапана из закрытого положения до полного подъема и возвращения обратно остается меньше времени. Когда продолжительность становиться еще короче, потребуются клапанные пружины с увеличенным усилием и часто становится механически невозможным приводить в движение клапаны даже при относительно низких оборотах.

Что же является практичным и надежным значением максимального подъема клапана?

Распредвалы с величиной подъема, большей 12,7 мм, находятся в той области, которая непрактична для обычных двигателей. Распредвалы с продолжительностью такта впуска менее 280о, сочетающейся с величиной подъема клапана более 12,7 мм, обеспечивают очень высокие скорости открывания и закрывания клапанов. Это создает нагрузки на механизм привода клапанов, что заметно уменьшает надежность кулачков распредвала, клапанных пружин, стержней клапанов, направляющих втулок клапанов.

Хотя вал с высокими скоростями подъема клапанов может хорошо работать сначала, срок службы его и направляющих втулок клапанов может не превышать 20 000 км. К счастью, большинство фирм-производителей распредвалов конструируют валы так, что обеспечивается хороший компромисс между значениями подъема и продолжительности открывания клапанов, при долгом сроке службы и надежности.

Наиболее подробно обсуждаемые подъем клапанов и продолжительность такта впуска не являются единственными элементами конструкции распредвала, которые влияют на выходную мощность двигателя. Моменты, в которые клапаны открываются и закрываются по отношению к положению распределительного вала, являются такими же важными параметрами для оптимизации характеристик двигателя. Эти фазы газораспределения распредвала указаны в таблице данных, прилагаемой к любому качественному распредвалу.

Эта таблица данных числами и графически иллюстрирует угловые положения распредвала, когда впускные и выпускные клапаны открываются и закрываются. Они определяются точно в градусах поворота коленчатого вала перед (или после) ВМТ или НМТ.

Всё про распредвал двигателя

Smiley face

Устройство распределительного вала (или распредвала, как его чаще всего называют) меняется по форме, но остается неизменным по своей сути. Независимо от того, какие модификации с ним происходят, распредвал остается неизменной деталью двигателей внутреннего сгорания.

Функции распредвала

Smiley face

В ДВС распредвал отвечает за открытие и закрытие впускных и выпускных клапанов, то есть за газораспределение непосредственно в камере сгорания двигателя. От особенностей конструкции мотора и самого распредвала, а также корректной настройки ГРМ, зависит эффективность работы двигателя: мощность, динамика, КПД. Эволюция двигателей влечет за собой и некоторые изменения в форме и функциях распредвала: создаются системы, подстраивающие газораспределение под частоту оборотов, устанавливаются валы на впуск и выпуск по отдельности, и, конечно, меняются материалы и способы обработки металлов.

Конструкция распредвала

В большинстве случаев распредвал вытачивается из цельного металлического цилиндра, и только некоторые производители устанавливают накладки с кулачками на ось, делая не цельную, а сборную конструкцию (например, распредвал на Audi Valvelift System (AVS), на котором кулачки перемещаются на оси распредвала). Но пока в большинстве автомобилей используются цельнолитые конструкции распредвалов, изготовленные из чугуна или износостойких слоев стали. Дополнительную твердость готовые валы получают в результате закалки: азотирования, лазерной обработки, отбеливания и т.д.

Smiley face

Основными конструктивными элементами распредвала являются кулачки, которые открывают клапаны напрямую или через толкатели. Опорные элементы (шейки) устанавливаются в подшипники скольжения (вкладыши), на которых распредвал вращается благодаря эффекту масляного клина с минимальным трением.

При вращении вала кулачки в строгой очередности открывают клапаны (как правило, на один клапан – один кулачок, хоть есть и другие варианты конструкции), а закрытие их происходит за счет пружин.

Smiley face

Принцип работы распредвала

Особое внимание конструкторы уделяют форме и размерам кулачков, ведь именно от их параметров зависит, на какую высоту и на какое время откроются клапаны, а значит, насколько эффективно будет подаваться воздух и отводиться выхлопные газы.

Существует закономерность: чем дольше открыт клапан, тем больше воздуха поступает в камеру сгорания, а значит, можно подать больше топлива. С другой стороны, слишком длительное открытие клапана грозит «поцелуем» между ним и поршнем. Это противоречие и пытаются всеми силами решить инженеры.

Для спортивных двигателей разработаны особые распредвалы, с измененной геометрией кулачка, на более длительный срок открывающей клапан. Такая конструкция позволяет мотору развивать максимальную мощность, что и требуется для автогонок. Однако при этом на порядок вырастает потребление топлива даже на холостом ходу, что совершенно не подходит для повседневного вождения.

Smiley face

Сравнение профиля кулачков обычного (слева)
и спортивного (справа) распредвалов

Скорость вращения распределительного вала в два раза меньше, чем у коленвала: за один полный такт двигателя коленвал делает два полных оборота, но каждый из клапанов должен открыться только один раз (на такте сжатия и рабочем такте оба клапана закрыты). Для синхронизации скорости вращения коленвала и ГРМ используется ременная или цепная передача (зубчатый ремень или цепь ГРМ), и самым совершенным на сегодняшний день вариантом является разрезная шестерня, зафиксированная на одном конце распредвала, на которую передается вращение от двигателя. Конструкция шестерни для ремня и цепи отличается.

Smiley face

Разрезная шестерня для цепного (слева)
и ременного (справа) привода

Тонкости конструкции

От высоты и профиля кулачков зависит глубина и продолжительность открывания клапана.

Smiley face

На рисунке видно, что кулачок С больше по высоте, чем остальные, D имеет более тонкую ось и за счет этого опускает клапан ниже, а Е дольше всех продержит клапан в открытом положении (только теоретически, на практике такой профиль кулачков не используется).

На распредвалах, независимо, установлен он один на впуск и выпуск, или на разные клапаны ставятся отдельные валы, предусмотрена так называемая фаза перекрытия: момент, когда выпускной клапан еще не закрылся, а впускной уже открывается. Конструкторы называют это продувкой: поток отработанных газов, выходя, создает дополнительное разрежение, облегчающее поступление воздуха в камеру сгорания. Чем меньше угол перекрытия (примерно от 15 градусов), тем экономичней мотор и лучше приемистость на низких оборотах. И наоборот, чем дольше оба клапана остаются открытыми одновременно, тем лучше приемистость мотора на высоких оборотах, но теряется экономия топлива и экологические нормы.

Smiley face

Схема построения фаз на распредвале

Типы размещения распредвала в двигателе

В конструкции двигателя может присутствовать один, два или четыре распредвала, в зависимости от компоновки цилиндров и количества клапанов.

При линейном расположении и 2-3 клапанами на цилиндр устанавливается один распредвал, управляющий и впуском, и выпуском (система SOHC).

Smiley face

При 4 клапанах на цилиндр ставится 1 или 2 распредвала (система DOHC – отдельные валы на впуск и выпуск).

Smiley face

Для V-образных или оппозитных двигателей распредвал устанавливается на каждый из блоков цилиндров отдельно (один общий на ряд или по два на ряд), либо один общий распредвал на все цилиндры (ставится по центру, в развале двигателя). Конструкторы предпочитают разделять впускные и выпускные валы, чтобы уменьшить нагрузку на них и сложность конструкции.

Как правило, впускной и выпускной распредвал почти не отличаются: одинаковая длина и диаметр вала, одинаковая высота и профиль кулачков. Разница может заключаться в конструкции крайних опорных шеек и приводных шкивов.

Smiley face

На один из распредвалов устанавливается датчик положения, для которого выделяется отдельное посадочное место.

Smiley face

Расположение распредвала относительно клапанов может различаться в разных конструкциях двигателей. В старых или маломощных моторах вал устанавливают сбоку от клапанов, соединяя их с кулачками через рокеры (Т-образные коромысла) и штанги. Такая система называется боковым или нижним расположением распредвала «Cam-in-Block». Их преимущество в более простой системе смазки (зачастую распредвал устанавливается прямо в картере), а недостаток – в сложной доступности для замены.

Smiley face

Моторы более поздних конструкций делались в распредвалами непосредственно над клапанами, что облегчает обслуживание и ремонт. Такое расположение, когда кулачки вала давят непосредственно на толкатели, называют верхним или «Cam-in-Head». Смазывать верхний распредвал несколько сложней: система подачи масла должна работать бесперебойно, в том числе это касается масляных каналов и отверстий в самом распредвале.

Немного о моторном масле

Smiley face

Долгая и бесперебойная работа ГРМ, и в том числе распредвала, напрямую зависит от качества смазки. Подача масла на подшипники скольжения (постели и вкладыши распредвала), а также на поверхность кулачков, должна быть бесперебойной. Отверстия внутри распредвала, предназначенные для подачи смазки к парам трения, достаточно тонкие и рассчитаны на моторное масло определенной вязкости и качества. Несвоевременная замена или неправильный подбор масла приводят к засорению каналов, после чего трение распредвала происходит не по слою жидкости (гидродинамическое планирование), а по поверхности металл-металл. Итог этого процесса печален, но предсказуем: быстрый износ кулачков (иногда до состояния идеальной окружности) и толкателей, а также шеек и вкладышей приводит к сбоям в работе двигателя. От чрезмерного трения распредвал может сломаться, а это уже чревато не только его заменой, но и капремонтом двигателя. Особенность конструкции распредвала в том, что даже минимальная выработка приводит к его вибрации и окончательному выходу из строя. В большинстве случаев основной причиной ремонта распредвалов является именно некачественное масло, несвоевременная его замена или неподходящая вязкость. При нормальном ТО ресурс распредвала будет столь же долгим, как и ресурс самого двигателя.

Другие причины неисправности распредвала

Помимо масляного голодания, причинами поломок может стать перегрев, от которого металл «ведет», естественный износ (рано или поздно всё изнашивается, как ни старайся), поломки смежных деталей (шкив, цепь или ремень ГРМ), а также изначально низкое качество распредвала (плохой металл, неточное изготовление). Признаки можно определить визуально или даже на слух: характерным симптомом неисправности именно распредвала будет стук при запуске холодного двигателя (в начале проблемы стук пропадает, когда мотор прогреется, а с ухудшением ситуации двигатель будет стучать постоянно).

Выработка и задиры на шейках, подшипниках, сальниках или кулачках – однозначный сигнал к замене детали.

Smiley face

Некачественный распредвал может искривиться (деформация, как правило, определяется не визуально, а только на специальном оборудовании) из-за прогиба опорных шеек. Для легковых автомобилей допустимая степень искривления распредвала составляет 0,05 мм, если больше – усиливается вибрация, выходят из строя смежные узлы двигателя.

При неправильной установке вала, а также некорректной сборке двигателя (недотянуты крепежные болты ГБЦ, распредвала, шкивов и шестерен) появляется вибрация во время работы. Вал срывает крепеж, после чего двигатель в большинстве случаев отправляется на капремонт. На самом распредвале могут появиться трещины, а пазы под штифты разбиваются под нагрузкой.

Ремонт распредвала проводить нецелесообразно: никакая шлифовка или напыление не вернет его первоначальных свойств. В случае выхода из строя деталь просто заменяют на новую, попутно устанавливая новые крепежные болты и проверяя цепь или ремень ГРМ.

Что будет дальше? Эволюция ГРМ

Технологии не стоят на месте, и сегодня можно уже говорить о том, как изменится работа газораспределительного механизма и в частности распредвала. Основные направления работы конструкторов – повышение экономичности двигателей, уменьшение вредных выбросов и увеличение отдачи мощности как на высоких, так и на низких оборотах. Для этой цели разработано несколько концептов, в которых либо используется измененный распредвал, либо не используется вообще.

Условно можно выделить несколько основных направлений работы:

  • изменения в работе распредвала: установка дополнительных кулачков, проворот распредвала для увеличения угла перекрытия и т.д.;
  • использование других систем управления открытием клапанов: электронное управление, магнитные или пневматические толкатели;
  • двигатели без клапанного механизма.

Концерн Honda предложил несколько вариантов улучшения распредвала. Например, это система DOHC i-VTEC, в которой подъемом клапанов управляют кулачки с низким профилем (на малых оборотах) или с высоким профилем (на режиме 5800 об/мин).

Smiley face

Очень похожий принцип использован в моторах Mitsubishi Pajero IV – система газораспределения MIVEC, управляющая высотой и продолжительностью открытия клапанов.

Smiley face

Второй вариант управления впуском – система VTEC-E от Honda, при которой на малых оборотах открывается только один впускной клапан, а на больших – оба. Это удалось реализовать с помощью системы VTC, при которой распредвал проворачивается относительно своей нулевой точки под давлением масла.

Smiley face

Похожий способ управления впуском создал и концерн Volkswagen: блок с кулачками крепится на валу с помощью шлицевого соединения, и под действием управляющего механизма может смещаться относительно продольной оси. Таким образом, над клапанами располагаются кулачки либо с низким, либо с высоким профилем, в зависимости от режима работы двигателя.

Smiley face

Разработка Volkswagen открывает широкие возможности: с помощью такого подхода можно управлять системой газораспределения в большом диапазоне, в том числе подключать или отключать цилиндры при необходимости.

Другой вариант предложила шведская компания Koenigsegg: управлять работой клапанов с помощью пневматических механизмов, а не распредвала, что в теории может дать прибавку мощности до 30% и увеличение крутящего момента до 20 тыс. об/мин. В 2015 году компания представила и реализацию этого принципа: автомобиль Regera с гибридным двигателем мощностью 1500 л.с. Насколько успешной будет эта разработка, покажет только время.

Двигатели без клапанов – тоже возможно! Это доказали в компании EcoMotors, которую возглавляет Петер Хофбауэр, бывший моторист концерна Volkswagen. В компании разработан двухцилиндровый оппозитный двигатель, превосходящий по своей мощности и экономичности современные турбодизели. Экспериментальный образец двигателя развивает мощность 325 л.с., а крутящий момент при 2100 об/мин составляет 900 Нм. Легкий, компактный и мощный мотор пока не запущен в серийное производство и находится в стадии доработки.

Smiley face

Несмотря на постоянно появляющиеся идеи и новинки, самым распространенным механизмом газораспределения остается старый-добрый распредвал, который может меняться по форме, но остается неизменным по сути.

О том, как выбрать новый распредвал и на что обращать внимание при выборе, читайте наш «Гид покупателя».

В предыдущей части мы рассмотрели 7 основных событий, происходящих в двигателе внутреннего сгорания. Для того чтобы лучше понять работу распредвалов, необходимо научится их читать. Для этого предлагаю посмотреть на следующую картинку: Здесь отлично видно, что и когда происходит. Теперь уберем цилиндры и рассмотрим подробно диаграмму распредвалов. 1. Duration — полная фаза открытия клапана. Как вы заметили на диаграмме 2 вида полной фазы. 270* — многие любители именно этой цифрой оперируют. Это значение в реальности нам НИЧЕГО НЕ ГОВОРИТ. Название advertised duration или running timing (seat-to-seat timing) – Что это? Во времена войны между производителями распредвалов (в 50-60 годах) seat-to-seat timing метод стал популярным, как один из путей продвижения, рекламирования своей продукции. Поэтому этот метод часто называется advertised duration или по-русски – рекламируемая полная фаза. Многие знают такое правило, что больше значит лучше, вот они и дали вам эти значения больше и все. Раньше энтузиасты тюнинга хорошо разбирались в фазировании ( cam timing) т.е. момент открытия, закрытия впускного и выпускного вала. Метод очень простой и очень правильный. Обозначается так 24-60/60-24 – впускной клапан открывается 24* перед ВМТ (BTDC), закрывается 60* после НМТ (ABDC). Выпускной клапан открывается 60* перед НМТ (BBDC) и закрывается 24* после ВМТ (ATDC). Это называется фазирование распредвала. Advertised duration метод внес много путаницы. Точную фазу очень сложно определить, к примеру разница между гидро и жестким толкателем составляет 10-15 градусов. Поэтому был введен новый способ обозначения 0.05 inch. Многие сразу заметили что этот метод более удобный и точный. Если возьмем типичный уличный (4 клапана) мотор с степенью сжатия 10.5, с тюниговым впуском и выпуском,то наиболее подходящих вал должен иметь полную фазу при 0.05 in duration — 215-230 градусов с гидро компенсаторами, и 230-240* с жесткими толкателем. 2. Lobe separation angle (LSA) — общий развал кулачков. Часто еще называют Lobe Center Angle (LCA) 3. ICA — Intake center angle или Intake Centerline – момент максимального подъема впускного клапана 4. ECA — Exhaust center angle или Exhaust Centerline — – момент максимального подъема выпускного клапана Если ICA реально показывает момент в градусах после ВМТ,когда максимальный подъем клапана (кулачка), или ECA – перед ВМТ, то Lobe Center Angle LCA (LSA) немного сложнее, он высчитывается по формуле: LSA=(ICL+ECL)/2 Далее: — EVO – открытие выпускного клапана — IVO – открытие впускного клапана — EVC – закрытие выпускного клапана — IVC – закрытие впускного клапана — OverLap – перекрытие, момент когда впускной и выпускной клапана открыты. Overlap = IVO+EVC Чтобы хорошо прочувствовать работу распредвалов, вы должны всегда держать в голове выше приведенную диаграмму, схему – это очень важно. Я вам напишу формулы, но имея перед глазами схему вы всегда сами все сделаете. Вот основные: — ICL = (Intake duration/2) – IVO — ECL = (Exhaust duration/2) – EVC, или ECA=(2*LCA)-ICA — LSA – (ICA+ECA)/2 — overlap = IVO+EVC, или ((InDur + ExDur)/4-LSA)*2 Для чего нужно знать всякие ICA, ECA, LSA? Если вы внимательно посмотрите на диаграмму, то увидите, что эти значения не изменяются в зависимости от метода измерения полной фазы при 0.05 inch или advertised seat-to-seat duration,следовательно, если вы с ними подружитесь, то у вас не будет проблем с пониманием сути процессов. В распредвалах еще есть такое понятие как подьем клапана (Cam lift). Сам по себе подъем никоим образом не влияет на мощность, так как при подьеме клапана на 25% от его диаметра , воздуха больше не поступит (при очень большом подъеме только ухудшится). Зачем же тогда спортивные машины используют большой подъем кулачка? Ответ прост – увеличивается скорость подъема и не более. Также существуют распредвалы с более агрессивной формой кулачка (к примеру Cran’s cam) У них также более интенсивно происходит подъем. Теперь вы понимаете, что просто значения полной фазы advertise duration не дают нам информацию о распредвале. Даже если мы не говорим о самом главном – моментах открытия и закрытия клапанов (их фазы), полная фаза также не корректна – зависит от подъема, формы кулачка, вида толкателя (а их много видов и типов). Ну вот, теперь мы можем перейти к самому интересному, как подобрать, от чего зависит распредвал т.к. мы теперь можем разговаривать на одном языке. Предлагаю посмотреть на стандартную спецификацию распредвала, в данном случае для мотора Дюратек 2.0 Форд. Рекомендации производителя — hot street — dirt track, и все! Да, широкое понятие. Как вы заметили, они указывают для рекламы advertised duration 280/273, но и естественно необходимую информацию для понимания и правильной установки. Что важно здесь смотреть: Полную фазу впускного клапана при подъеме 1 мм – 242* (в данном случае не 0.05 inch, так часто делают, Европейские производители при 1 мм), далее нам необходимо для полной картины ICA, ECA и, в принципе, этого достаточно. Все остальное можно и самому посчитать, но у них великолепная карта, где и так все указано timimg @1.mm – 11-52/42-10. Осталось высчитать Lobe separation angle (LSA) — общий развал кулачков — LSA – (ICA+ECA)/2, LSA = 108, Overlap (перекрытие) – 21, и Total Cam advanca (опережение или задержка), в данном случае задержка (retard) 2 градуса. Да вал очень прикольный, но мне кажется не удачный в том варианте, как они предлагают установить. По их спецификации получается, что необходимо иметь степень сжатия как минимум 12.5 (ну в принципе стандартная FIA разрешенная для ралли, гонок) хорошую систему впуска, и выпуска. Короче если вы просто установите эти валы на ваш мотор (сток) дюратек то особо вас это не порадует. Да, все-таки правило «БОЛЬШЕ-ЭТО ЛУЧШЕ» работает, но только в рекламе, а не в постройке хорошего мотора и подборе распредвалов. Я понимаю, все слышали, видели, что спортсмены используют валы с полной (рекламной) фазой под 300, а некоторые и 320 (если 2 клапана на цилиндр то фаза должна быть на 19* шире), но спортивные моторы совсем другие и задачи у них также иные. Главное, что влияет на полную фазу (не рекламную)-это конечно ход поршня и степень сжатия, а уж потом обороты двигателя и совсем немного диаметр цилиндра. — больше ход поршня (stroke) – шире полная фаза (duration) — выше степень сжатия — шире полная фаза (duration) — выше обороты двигателя — шире полная фаза (duration) Если мы продолжим делать наш мотор дюратек 2.0 (начало в 1 части), как помните мы не собирались трогать сам мотор (его блок) т.е. степень сжатия 10.8 остается, то нам для этих целей(пик мощности при 7200 оборотов)подходит впускной распредвал с полной фазой при открытии клапана 0.05 дюйма – 236 градусов. В принципе этот вал от фирмы CAT CAMS duration 242 @0.05 нам по этим параметрам подходит (там потери будут минимальны) да еще и возможность впоследствии поднять обороты. Но что же не так, почему не будет при такой установке(как написано в спецификации) ощутимого прироста мощности? Теперь пришло время суммировать то, что было в 1 части и что написано здесь. Как я уже писал в двигателе 7 процессов, событий, которые связаны между собой. Эффективность этих процессов зависит от фазировки распредвалов, а именно от ( EVO, EVC, IVO, IVC) открытие и закрытие клапанов, а за это отвечает распредвал (распредвалы). EVC и IVO не так важны по раздельности, но вот вместе даже очень (особенно закрытие выпускного клапана EVC exhast valve cloused) — Overlap – перекрытие (оба клапана открыты). Важность момента закрытия выпускного клапана составляет около 50% от важности закрытия впускного клапана. IVC – наиболее критичный момент, отвечающий за наполнение цилиндров. ПРОЦЕСС 2 — ВПУСК (УТРАМБОВКА/) (INTAKE RAMMING). Ну и как следствие влияет и на ПРОЦЕСС 3 — СЖАТИЕ. Рассмотрим на примерах именно влияние фазирования распредвалов. Есть такое понятие: тюнинг валов, не говоря уже о всевозможных VCT Variable Cam Timing (изменяемые фазы газораспределения) или Ti-VCT на двух распредвалах. На моторах форд такие системы применяются,применялись на моторах Zetec 2.0 L – выпускной распредвал, на форд СТ 170 также такая система была, но на впускном распредвале, и использовалась на форд пума. Система Ti-VCT используется на современных моторах Форд, но вот дюратек, к сожалению, нет. Но это не беда. В этом вам может помочь разрезная шестерня (но можно при желании и без нее). Давайте опустим техническую часть, это вам сможет сделать любой нормальный автомеханик, но вот как и куда двигать они не все знают. На небольших гоночных моторах 1.6 — 2.0 литра с хорошими клапанами и правильно сделанными каналами наиболее оптимальным (дает самый большой средний spread разброс мощности) — является LSA 102* градуса. Впускной клапан закрывается достаточно рано, уменьшая при этом intake reversion, выталкивание поступающего воздушного заряда в процессе 2, когда поршень идет вверх. Поэтому цилиндр будет наполняться лучше в среднем диапазоне оборотов и, как следствие, увеличение мощности. Также будет увеличено перекрытие (overlap), в связке с хорошим потенциалом поступающего воздуха (система впуска, головка блока цилиндров) и при правильно настроенной системе выпуска, которая обеспечит хороший инерционный момент отработанных газов, поможет улучшить наполняемость цилиндров на высоких оборотах. Конечно, более позднее закрытие выпускного клапана создаст проблемы на низких оборотах, потому что выходящие газы имеют в этом диапазоне мало инерции, они не создадут разряжения и будут поступать обратно в камеру сгорания. Эти горячие газы займут много места, ограничив поступление тем самым свежего заряда топливо-воздушной смеси и уменьшат мощность и ухудшат холостой ход. Если для вас это проблема, к примеру машина не только для гонок, то сделайте LSA скажем 105* градусов и ситуация значительно улучшится. Бывает и такая ситуация, когда все сделано очень хорошо (может даже слишком), да еще и в сочетании с хорошо спроектированным выпускным коллектором, всей системой выпуска, может случиться другая проблема. На высоких оборотах система выпуска может over scavenge – перепродуть (см. процесс в 1 части), она не только создаст разряжение помогающее очистить, вытянуть отработанные газы, но еще и потянет за собой и свежепоступающий заряд. До определенного уровня это нормально, в гоночном моторе скажем для драг райсинга, где экономия топлива не важна, но при подготовке мотора для многочасовых гонок этот момент нельзя упускать. На этом фоне может понизиться и мощность. Решением этой проблемы может быть: — более широкий LSA — или выпускной кулачок с меньшей полной фазой — или с меньшим подъемом Если вы планируете выступать в гоночном классе, где есть ограничения по системе впуска (сток впуск, заслонка, рестриктор), по доработке впускного и выпускного каналов, распредвал с более широким LSA работает лучше. Маленькая дроссельная заслонка, впускные раннеры, каналы обеспечат высокую скорость поступающего воздуха во впускном тракте, что улучшит средний диапазон мощности (улучшив наполняемость цилиндров на средних оборотах). Высокая скорость это значит и большая инерция не допустит реверса поступающего свежего заряда в момент, когда поршень идет вверх (ПРОЦЕСС 2 — ВПУСК (УТРАМБОВКА) (INTAKE RAMMING). Но т.к. мы расширим LSA, впускной клапан будет закрываться позже, то на высоких оборотах даст больше времени для наполнения цилиндров свежим зарядом воздуха. Со стороны выпуска, открытие выпускного клапана раньше даст цилиндрам больше времени для выталкивания отработанных газов через тонкие выпускные каналы, раннеры коллектора. Следовательно, меньше мощности мотора будет использовано для выталкивания газов после того, как клапан открывается на такте выпуска. Просуммируем вышесказанное. Более узкий LSA — общий развал кулачков помогает улучшить средний диапазон мощности, но если слишком увлечься этим, то можно ухудшить верхний диапазон из-за перепродувки, а на низких оборотах и холостом ходу будут ухудшения из-за exhaust reversion. Если мы посмотрим на эту ситуацию со стороны характеристик каналов, ели у нас впуск и выпуск ограничены, то неплохо работает более широкий угол развала кулачков LSA. Если у нас все сделано правильно, то средний угол (LSA около 104-106 для гоночного мотора, 108-110 для дорожного двигателя). Однако, на двигателе с хорошим потоком на впуске, но достаточно средним на выпуске, лучше будет узкий угол. Как вы помните, наиболее важный момент-это закрытие впускного клапана. Опережение и запаздывание распредвалов (cam advance and retard) Вот здесь уже начинается самое интересное… P.S. Также необходимо рассмотреть как влияет настройка распредвалов на детонацию, температуру выпускных газов. Как правильно настроить, подобрать распредвал в зависимости от степени сжатия, вида топлива – это все очень важно для получения реально высоких мощностей с литра (100-150 и выше) конечно с атмо мотора. На турбо немного другой принцип настройки и подбора распредвалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *